Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.261
Filtrar
1.
Vaccine ; 42(10): 2695-2706, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38494412

RESUMEN

BACKGROUND: Three encephalitic alphaviruses-western, eastern, and Venezuelan equine encephalitis virus (WEEV, EEEV and VEEV)-can cause severe disease and have the potential to be used as biological weapons. There are no approved vaccines for human use. A novel multivalent MVA-BN-WEV vaccine encodes the envelope surface proteins of the 3 viruses and is thereby potentially able to protect against them all, as previously demonstrated in animal models. This first-in-human study assessed the safety, tolerability, and immunogenicity of MVA-BN-WEV vaccine in healthy adult participants. METHODS: Forty-five participants were enrolled into 3 dose groups (1 × 10E7 Inf.U, 1 × 10E8 Inf.U, and 2 × 10E8 Inf.U), received 2 doses 4 weeks apart, and were then monitored for 6 months. RESULTS: The safety profile of MVA-BN-WEV was acceptable at all administered doses, with incidence of local solicited AEs increased with increasing dose and no other clinically meaningful differences between dose groups. One SAE (Grade 2 pleural effusion) was reported in the lowest dose group and assessed as possibly related. No AEs resulted in death or led to withdrawal from the second vaccination or from the trial. The most common local solicited AE was injection site pain, and general solicited AEs were headache, fatigue, and myalgia. MVA-BN-WEV induced humoral immune responses; WEEV-, EEEV- and VEEV-specific neutralizing antibody responses peaked 2 weeks following the second vaccination, and the magnitude of these responses increased with dose escalation. The highest dose resulted in seroconversion of all (100 %) participants for WEEV and VEEV and 92.9 % for EEEV, 2 weeks following second vaccination, and durability was observed for 6 months. MVA-BN-WEV induced cellular immune responses to VEEV E1 and E2 (EEEV and WEEV not tested) and a dose effect for peptide pool E2. CONCLUSION: The study demonstrated that MVA-BN-WEV is well tolerated, induces immune responses, and is suitable for further development. CLINICAL TRIAL REGISTRY NUMBER: NCT04131595.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina , Animales , Caballos , Humanos , Anticuerpos Antivirales , Encefalomielitis Equina/prevención & control , Anticuerpos Neutralizantes , Virus Vaccinia , Inmunogenicidad Vacunal
2.
Nat Microbiol ; 9(2): 550-560, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316930

RESUMEN

Pathogen lineage nomenclature systems are a key component of effective communication and collaboration for researchers and public health workers. Since February 2021, the Pango dynamic lineage nomenclature for SARS-CoV-2 has been sustained by crowdsourced lineage proposals as new isolates were sequenced. This approach is vulnerable to time-critical delays as well as regional and personal bias. Here we developed a simple heuristic approach for dividing phylogenetic trees into lineages, including the prioritization of key mutations or genes. Our implementation is efficient on extremely large phylogenetic trees consisting of millions of sequences and produces similar results to existing manually curated lineage designations when applied to SARS-CoV-2 and other viruses including chikungunya virus, Venezuelan equine encephalitis virus complex and Zika virus. This method offers a simple, automated and consistent approach to pathogen nomenclature that can assist researchers in developing and maintaining phylogeny-based classifications in the face of ever-increasing genomic datasets.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Infección por el Virus Zika , Virus Zika , Animales , Caballos/genética , Filogenia , Virus de la Encefalitis Equina Venezolana/genética , Genómica , Secuencia de Bases , Genoma Viral , SARS-CoV-2/genética , Virus Zika/genética
3.
MAbs ; 16(1): 2297451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38170638

RESUMEN

The development of specific, safe, and potent monoclonal antibodies (Abs) has led to novel therapeutic options for infectious disease. In addition to preventing viral infection through neutralization, Abs can clear infected cells and induce immunomodulatory functions through engagement of their crystallizable fragment (Fc) with complement proteins and Fc receptors on immune cells. Little is known about the role of Fc effector functions of neutralizing Abs in the context of encephalitic alphavirus infection. To determine the role of Fc effector function in therapeutic efficacy against Venezuelan equine encephalitis virus (VEEV), we compared the potently neutralizing anti-VEEV human IgG F5 (hF5) Ab with intact Fc function (hF5-WT) or containing the loss of function Fc mutations L234A and L235A (hF5-LALA) in the context of VEEV infection. We observed significantly reduced binding to complement and Fc receptors, as well as differential in vitro kinetics of Fc-mediated cytotoxicity for hF5-LALA compared to hF5-WT. The in vivo efficacy of hF5-LALA was comparable to hF5-WT at -24 and + 24 h post infection, with both Abs providing high levels of protection. However, when hF5-WT and hF5-LALA were administered + 48 h post infection, there was a significant decrease in the therapeutic efficacy of hF5-LALA. Together these results demonstrate that optimal therapeutic Ab treatment of VEEV, and possibly other encephalitic alphaviruses, requires neutralization paired with engagement of immune effectors via the Fc region.


Asunto(s)
Anticuerpos Antivirales , Virus de la Encefalitis Equina Venezolana , Animales , Caballos , Humanos , Virus de la Encefalitis Equina Venezolana/genética , Anticuerpos Neutralizantes/farmacología , Receptores Fc , Inmunoglobulina G
4.
J Neuroinflammation ; 21(1): 24, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233868

RESUMEN

BACKGROUND: Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. METHODS: We utilized an established murine model of intranasal infection with VEEV and a repository of scRNAseq data from IFN-treated OSN to assess the cellular targets and IFN signaling responses after VEEV exposure. RESULTS: We found that immature OSN, which express higher levels of the VEEV receptor LDLRAD3 than mature OSN, are the first cells infected by VEEV. Despite rapid VEEV neuroinvasion after intranasal exposure, olfactory neuroepithelium (ONE) and olfactory bulb (OB) IFN responses, as assessed by evaluation of expression of interferon signaling genes (ISG), are delayed for up to 48 h during VEEV neuroinvasion, representing a potential therapeutic window. Indeed, a single intranasal dose of recombinant IFNα triggers early ISG expression in both the nasal cavity and OB. When administered at the time of or early after infection, IFNα treatment delayed onset of sequelae associated with encephalitis and extended survival by several days. VEEV replication after IFN treatment was also transiently suppressed in the ONE, which inhibited subsequent invasion into the CNS. CONCLUSIONS: Our results demonstrate a critical and promising first evaluation of intranasal IFNα for the treatment of human encephalitic alphavirus exposures.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Neuronas Receptoras Olfatorias , Humanos , Ratones , Animales , Virus de la Encefalitis Equina Venezolana/genética , Sistema Nervioso Central , Replicación Viral
5.
Viruses ; 15(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140592

RESUMEN

Venezuelan equine encephalitis virus (VEEV) outbreaks occur sporadically. Additionally, VEEV has a history of development as a biothreat agent. Yet, no FDA-approved vaccine or therapeutic exists for VEEV disease. The sporadic outbreaks present a challenge for testing medical countermeasures (MCMs) in humans; therefore, well-defined animal models are needed for FDA Animal Rule licensure. The cynomolgus macaque (CM) model has been studied extensively at high challenge doses of the VEEV Trinidad donkey strain (>1.0 × 108 plaque-forming units [PFU]), doses that are too high to be a representative human dose. Based on viremia of two subtypes of VEEV, IC, and IAB, we found the CM infectious dose fifty (ID50) to be low, 12 PFU, and 6.7 PFU, respectively. Additionally, we characterized the pattern of three clinical parameters (viremia, temperature, and lymphopenia) across a range of doses to identify a challenge dose producing consistent signs of infection. Based on these studies, we propose a shift to using a lower challenge dose of 1.0 × 103 PFU in the aerosol CM model of VEEV disease. At this dose, NHPs had the highest viremia, demonstrated a fever response, and had a measurable reduction in complete lymphocyte counts-biomarkers that can demonstrate MCM efficacy.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Vacunas Virales , Animales , Caballos , Humanos , Macaca fascicularis , Viremia/tratamiento farmacológico , Modelos Animales de Enfermedad
6.
J Med Entomol ; 60(6): 1149-1164, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37862065

RESUMEN

Everglades virus (EVEV) is subtype II of the Venezuelan equine encephalitis virus (VEEV) complex (Togaviridae: Alphavirus), endemic to Florida, USA. EVEV belongs to a clade that includes both enzootic and epizootic/epidemic VEEV subtypes. Like other enzootic VEEV subtypes, muroid rodents are important vertebrate hosts for EVEV and certain mosquitoes are important vectors. The hispid cotton rat Sigmodon hispidus and cotton mouse Peromyscus gossypinus are important EVEV hosts, based on natural infection (virus isolation and high seropositivity), host competence (experimental infections), and frequency of contact with the vector. The mosquito Culex (Melanoconion) cecedei is the only confirmed vector of EVEV based upon high natural infection rates, efficient vector competence, and frequent feeding upon muroid rodents. Human disease attributed to EVEV is considered rare. However, cases of meningitis and encephalitis are recorded from multiple sites, separated by 250 km or more. Phylogenetic analyses indicate that EVEV is evolving, possibly due to changes in the mammal community. Mutations in the EVEV genome are of concern, given that epidemic strains of VEEV (subtypes IAB and IC) are derived from enzootic subtype ID, the closest genetic relative of EVEV. Should epizootic mutations arise in EVEV, the abundance of Aedes taeniorhynchus and other epizootic VEEV vectors in southern Florida provides a conducive environment for widespread transmission. Other factors that will likely influence the distribution and frequency of EVEV transmission include the establishment of Culex panocossa in Florida, Everglades restoration, mammal community decline due to the Burmese python, land use alteration by humans, and climate change.


Asunto(s)
Aedes , Alphavirus , Culex , Virus de la Encefalitis Equina Venezolana , Animales , Humanos , Virus de la Encefalitis Equina Venezolana/genética , Florida/epidemiología , Mamíferos , Mosquitos Vectores , Peromyscus , Filogenia , Roedores , Sigmodontinae
7.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834397

RESUMEN

Sindbis alphavirus vectors offer a promising platform for cancer therapy, serving as valuable models for alphavirus-based treatment. This review emphasizes key studies that support the targeted delivery of Sindbis vectors to tumor cells, highlighting their effectiveness in expressing tumor-associated antigens and immunomodulating proteins. Among the various alphavirus vectors developed for cancer therapy, Sindbis-vector-based imaging studies have been particularly extensive. Imaging modalities that enable the in vivo localization of Sindbis vectors within lymph nodes and tumors are discussed. The correlation between laminin receptor expression, tumorigenesis, and Sindbis virus infection is examined. Additionally, we present alternative entry receptors for Sindbis and related alphaviruses, such as Semliki Forest virus and Venezuelan equine encephalitis virus. The review also discusses cancer treatments that are based on the alphavirus vector expression of anti-tumor agents, including tumor-associated antigens, cytokines, checkpoint inhibitors, and costimulatory immune molecules.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Neoplasias , Humanos , Alphavirus/genética , Vectores Genéticos/genética , Neoplasias/terapia , Terapia Genética/métodos
8.
Bioorg Med Chem Lett ; 94: 129432, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591319

RESUMEN

Nucleoside and nucleobase analogs capable of interfering with nucleic acid synthesis have played essential roles in fighting infectious diseases. However, many of these agents are associated with important and potentially lethal off-target intracellular effects that limit their use. Based on the previous discovery of base-modified 2'-deoxyuridines, which showed high anticancer activity while exhibiting lower toxicity toward rapidly dividing normal human cells compared to antimetabolite chemotherapeutics, we hypothesized that a similar modification of the N4-hydroxycytidine (NHC) molecule would provide novel antiviral compounds with diminished side effects. This presumption is due to the substantial structural difference with natural cytidine leading to less recognizability by host cell enzymes. Among the 42 antimetabolite species that have been synthesized and screened against VEEV, one hit compound was identified. The structural features of the modifying moiety were similar to those of the anticancer lead 2'-deoxyuridine derivative reported previously, providing an opportunity to pursue further structure-activity relationship (SAR) studies directed to lead improvement, and obtain insight into the mechanism of action, which can lead to identifying drug candidates against a broad spectrum of RNA viral infections.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Animales , Humanos , Antimetabolitos , Antivirales/farmacología , Desoxiuridina , Caballos , Inmunosupresores
9.
J Virol ; 97(8): e0082723, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37560924

RESUMEN

Venezuelan equine encephalitis virus (VEEV) causes a febrile illness that can progress to neurological disease with the possibility of death in human cases. The evaluation and optimization of therapeutics that target brain infections demands knowledge of the host's response to VEEV, the dynamics of infection, and the potential for within-host evolution of the virus. We hypothesized that selective pressures during infection of the brain may differ temporally and spatially and so we investigated the dynamics of the host response, viral transcript levels, and genetic variation of VEEV TC-83 in eight areas of the brain in mice over 7 days post-infection (dpi). Viral replication increased throughout the brain until 5-6 dpi and decreased thereafter with neurons as the main site of viral replication. Low levels of genetic diversity were noted on 1 dpi and were followed by an expansion in the genetic diversity of VEEV and nonsynonymous (Ns) mutations that peaked by 5 dpi. The pro-inflammatory response and the influx of immune cells mirrored the levels of virus and correlated with substantial damage to neurons by 5 dpi and increased activation of microglial cells and astrocytes. The prevalence and dynamics of Ns mutations suggest that the VEEV is under selection within the brain and that progressive neuroinflammation may play a role in acting as a selective pressure. IMPORTANCE Treatment of encephalitis in humans caused by Venezuelan equine encephalitis virus (VEEV) from natural or aerosol exposure is not available, and hence, there is a great interest to address this gap. In contrast to natural infections, therapeutic treatment of infections from aerosol exposure will require fast-acting drugs that rapidly penetrate the blood-brain barrier, engage sites of infection in the brain and mitigate the emergence of drug resistance. Therefore, it is important to understand not only VEEV pathogenesis, but the trafficking of the viral population within the brain, the potential for within-host evolution of the virus, and how VEEV might evolve resistance.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalitis , Animales , Humanos , Ratones , Encéfalo , Muerte Celular , Virus de la Encefalitis Equina Venezolana/genética , Variación Genética , Encefalitis/virología
10.
Sci Rep ; 13(1): 13053, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567900

RESUMEN

The authentic SARS-CoV-2 requires to be handled in Biosafety Level 3 laboratories, which restrains investigation by the broader scientific community. Here, we report the development of a novel SARS-CoV-2 viral vector composed of all 4 SARS-CoV-2 structural proteins, the packaging signal sequence of SARS-CoV-2, a reporter gene, and an RNA amplification component of Venezuelan equine encephalitis virus (VEEV). This VEE-SARS-CoV-2 viral vector transduces target cells in an ACE2-dependent manner, and all 4 structural proteins of SARS-CoV-2 are indispensable for its transduction activity. Comparative studies show that the incorporation of the VEEV self-amplification mechanism increases the gene expression level by ~ 65-fold and extends the transgene expression up to 11 days in transduced cells. Additionally, we demonstrated the significant applications of this new VEE-SARS-CoV-2 vector for neutralizing antibody quantification and antiviral drug testing. The VEE-SARS-CoV-2 vectors developed will be an important and versatile tool for investigating SARS-CoV-2 molecular virology, developing antiviral agents targeting receptor binding, and studying RNA genome packaging and function of the essential but not well studied structural proteins of SARS-CoV-2.


Asunto(s)
COVID-19 , Virus de la Encefalitis Equina Venezolana , Animales , Caballos/genética , SARS-CoV-2/genética , Virus de la Encefalitis Equina Venezolana/genética , Anticuerpos Neutralizantes , ARN/metabolismo , Antivirales/metabolismo
11.
Cell Rep ; 42(8): 112946, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37556325

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism. Our analysis shows that LDLRAD3 is required for efficient VEEV infection and pathogenesis prior to and after central nervous system invasion. Ldlrad3-deficient mice survive intranasal and intracranial VEEV inoculation and show reduced infection of neurons in different brain regions. As LDLRAD3 is a determinant of pathogenesis and an entry receptor required for VEEV infection of neurons of the brain, receptor-targeted therapies may hold promise as countermeasures.


Asunto(s)
Encefalomielitis Equina Venezolana , Receptores de LDL , Animales , Ratones , Encéfalo/patología , Sistema Nervioso Central , Virus de la Encefalitis Equina Venezolana/fisiología , Encefalomielitis Equina Venezolana/patología , Receptores de LDL/fisiología
12.
EMBO Rep ; 24(9): e56901, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37497756

RESUMEN

Interferons control viral infection by inducing the expression of antiviral effector proteins encoded by interferon-stimulated genes (ISGs). The field has mostly focused on identifying individual antiviral ISG effectors and defining their mechanisms of action. However, fundamental gaps in knowledge about the interferon response remain. For example, it is not known how many ISGs are required to protect cells from a particular virus, though it is theorized that numerous ISGs act in concert to achieve viral inhibition. Here, we used CRISPR-based loss-of-function screens to identify a markedly limited set of ISGs that confer interferon-mediated suppression of a model alphavirus, Venezuelan equine encephalitis virus (VEEV). We show via combinatorial gene targeting that three antiviral effectors-ZAP, IFIT3, and IFIT1-together constitute the majority of interferon-mediated restriction of VEEV, while accounting for < 0.5% of the interferon-induced transcriptome. Together, our data suggest a refined model of the antiviral interferon response in which a small subset of "dominant" ISGs may confer the bulk of the inhibition of a given virus.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Virus , Animales , Caballos , Interferones , Línea Celular , Replicación Viral , Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/fisiología
13.
Viruses ; 15(7)2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37515189

RESUMEN

The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.B79) is essential for viral replication. High throughput in silico/in vitro screening using a focused set of known cysteine protease inhibitors identified two epoxysuccinyl prodrugs, E64d and CA074 methyl ester (CA074me) and a reversible oxindole inhibitor. Here, we determined the X-ray crystal structure of the CA074-inhibited nsP2 protease and compared it with our E64d-inhibited structure. We found that the two inhibitors occupy different locations in the protease. We designed hybrid inhibitors with improved potency. Virus yield reduction assays confirmed that the viral titer was reduced by >5 logs with CA074me. Cell-based assays showed reductions in viral replication for CHIKV, VEEV, and WEEV, and weaker inhibition of EEEV by the hybrid inhibitors. The most potent was NCGC00488909-01 which had an EC50 of 1.76 µM in VEEV-Trd-infected cells; the second most potent was NCGC00484087 with an EC50 = 7.90 µM. Other compounds from the NCATS libraries such as the H1 antihistamine oxatomide (>5-log reduction), emetine, amsacrine an intercalator (NCGC0015113), MLS003116111-01, NCGC00247785-13, and MLS00699295-01 were found to effectively reduce VEEV viral replication in plaque assays. Kinetic methods demonstrated time-dependent inhibition by the hybrid inhibitors of the protease with NCGC00488909-01 (Ki = 3 µM) and NCGC00484087 (Ki = 5 µM). Rates of inactivation by CA074 in the presence of 6 mM CaCl2, MnCl2, or MgCl2 were measured with varying concentrations of inhibitor, Mg2+ and Mn2+ slightly enhanced inhibitor binding (3 to 6-fold). CA074 inhibited not only the VEEV nsP2 protease but also that of CHIKV and WEEV.


Asunto(s)
Proteasas de Cisteína , Virus de la Encefalitis Equina Venezolana , Animales , Caballos , Replicación Viral , Inhibidores de Cisteína Proteinasa/farmacología
14.
Cell ; 186(12): 2672-2689.e25, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37295404

RESUMEN

Alphaviruses are RNA viruses that represent emerging public health threats. To identify protective antibodies, we immunized macaques with a mixture of western, eastern, and Venezuelan equine encephalitis virus-like particles (VLPs), a regimen that protects against aerosol challenge with all three viruses. Single- and triple-virus-specific antibodies were isolated, and we identified 21 unique binding groups. Cryo-EM structures revealed that broad VLP binding inversely correlated with sequence and conformational variability. One triple-specific antibody, SKT05, bound proximal to the fusion peptide and neutralized all three Env-pseudotyped encephalitic alphaviruses by using different symmetry elements for recognition across VLPs. Neutralization in other assays (e.g., chimeric Sindbis virus) yielded variable results. SKT05 bound backbone atoms of sequence-diverse residues, enabling broad recognition despite sequence variability; accordingly, SKT05 protected mice against Venezuelan equine encephalitis virus, chikungunya virus, and Ross River virus challenges. Thus, a single vaccine-elicited antibody can protect in vivo against a broad range of alphaviruses.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Vacunas Virales , Animales , Ratones , Virus de la Encefalitis Equina Venezolana/genética , Anticuerpos Antivirales , Macaca
15.
Biotechnol Lett ; 45(8): 1029-1038, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37266878

RESUMEN

Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Animales , Virus de la Encefalitis Equina Venezolana/genética , Línea Celular , Sistemas de Lectura Abierta , ARN/metabolismo , Replicón/genética , Mutación , Expresión Génica , Mamíferos/genética
16.
Viruses ; 15(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376607

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a disease typically confined to South and Central America, whereby human disease is characterised by a transient systemic infection and occasionally severe encephalitis, which is associated with lethality. Using an established mouse model of VEEV infection, the encephalitic aspects of the disease were analysed to identify biomarkers associated with inflammation. Sequential sampling of lethally challenged mice (infected subcutaneously) confirmed a rapid onset systemic infection with subsequent spread to the brain within 24 h of the challenge. Changes in inflammatory biomarkers (TNF-α, CCL-2, and CCL-5) and CD45+ cell counts were found to correlate strongly to pathology (R>0.9) and present previously unproven biomarkers for disease severity in the model, more so than viral titre. The greatest level of pathology was observed within the olfactory bulb and midbrain/thalamus. The virus was distributed throughout the brain/encephalon, often in areas not associated with pathology. The principal component analysis identified five principal factors across two independent experiments, with the first two describing almost half of the data: (1) confirmation of a systemic Th1-biased inflammatory response to VEEV infection, and (2) a clear correlation between specific inflammation of the brain and clinical signs of disease. Targeting strongly associated biomarkers of deleterious inflammation may ameliorate or even eliminate the encephalitic syndrome of this disease.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Humanos , Caballos , Ratones , Animales , Factor de Necrosis Tumoral alfa , Virus de la Encefalitis Equina Venezolana/fisiología , Encéfalo , Inflamación/patología , Quimiocinas , Leucocitos
17.
Int J Biol Macromol ; 245: 125514, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37353130

RESUMEN

Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, nucleic acid, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Vacunas Virales , Animales , Caballos , Humanos , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/prevención & control , Vacunas de Productos Inactivados , Desarrollo de Vacunas
18.
Sci Transl Med ; 15(691): eabl9344, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043558

RESUMEN

Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 µM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Oriental , Humanos , Caballos , Animales , Ratones , Estados Unidos , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Endogámicos C57BL , Encéfalo
19.
J Phys Chem B ; 127(14): 3175-3186, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001021

RESUMEN

Although Venezuelan equine encephalitis virus (VEEV) is a life-threatening pathogen with a capacity for epidemic outbreaks, there are no FDA-approved VEEV antivirals for humans. VEEV cytotoxicity is partially attributed to the formation of a tetrameric complex between the VEEV capsid protein, the nuclear import proteins importin-α and importin-ß, and the nuclear export protein CRM1, which together block trafficking through the nuclear pore complex. Experimental studies have identified small molecules from the CL6662 scaffold as potential inhibitors of the viral nuclear localization signal (NLS) sequence binding to importin-α. However, little is known about the molecular mechanism of CL6662 inhibition. To address this issue, we employed all-atom replica exchange molecular dynamics simulations to probe, in atomistic detail, the binding mechanism of CL6662 ligands to importin-α. Three ligands, including G281-1485 and two congeners with varying hydrophobicities, were considered. We investigated the distribution of ligand binding poses, their locations, and ligand specificities measured by the strength of binding interactions. We found that G281-1485 binds nonspecifically without forming well-defined binding poses throughout the NLS binding site. Binding of the less hydrophobic congener becomes strongly on-target with respect to the NLS binding site but remains nonspecific. However, a more hydrophobic congener is a strongly specific binder and the only ligand out of three to form a well-defined binding pose, while partially overlapping with the NLS binding site. On the basis of free energy estimates, we argue that all three ligands weakly compete with the viral NLS sequence for binding to importin-α in an apparent compromise to preserve host NLS binding. We further show that all-atom replica exchange binding simulations are a viable tool for studying ligands binding nonspecifically without forming well-defined binding poses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , alfa Carioferinas , Animales , Caballos , Humanos , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Virus de la Encefalitis Equina Venezolana/metabolismo , Simulación de Dinámica Molecular , Ligandos , Señales de Localización Nuclear/química , Señales de Localización Nuclear/metabolismo , Núcleo Celular/metabolismo , Sitios de Unión , Unión Proteica
20.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992362

RESUMEN

New World alphaviruses including Venezuelan Equine Encephalitis Virus (VEEV) and Eastern Equine Encephalitis Virus (EEEV) are mosquito-transmitted viruses that cause disease in humans and equines. There are currently no FDA-approved therapeutics or vaccines to treat or prevent exposure-associated encephalitic disease. The ubiquitin proteasome system (UPS)-associated signaling events are known to play an important role in the establishment of a productive infection for several acutely infectious viruses. The critical engagement of the UPS-associated signaling mechanisms by many viruses as host-pathogen interaction hubs led us to hypothesize that small molecule inhibitors that interfere with these signaling pathways will exert broad-spectrum inhibitory activity against alphaviruses. We queried eight inhibitors of the UPS signaling pathway for antiviral outcomes against VEEV. Three of the tested inhibitors, namely NSC697923 (NSC), bardoxolone methyl (BARM) and omaveloxolone (OMA) demonstrated broad-spectrum antiviral activity against VEEV and EEEV. Dose dependency and time of addition studies suggest that BARM and OMA exhibit intracellular and post-entry viral inhibition. Cumulatively, our studies indicate that inhibitors of the UPS-associated signaling pathways exert broad-spectrum antiviral outcomes in the context of VEEV and EEEV infection, supporting their translational application as therapeutic candidates to treat alphavirus infections.


Asunto(s)
Alphavirus , Virus de la Encefalitis Equina Venezolana , Humanos , Caballos , Animales , Antivirales/farmacología , Ubiquitina , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...